We would like to think that AI-based machine learning systems will always produce the right answer within their problem domain. However, in reality, their performance is a direct result of the data used to train them. The answers in production are only as good as that training data. But data collected by human means, such as surveys, observations, or estimates can have built-in human biases, such as the confirmation bias or the representative bias. Even seemingly objective measurements can measure the wrong things or miss essential information about the problem domain. The effects of biased data can be even more insidious. AI systems often function as black boxes, which means technologists are unaware of how an AI came to its conclusion. This can make it particularly hard to identify any inequality, bias, or discrimination feeding into a particular decision. Tune into this talk to learn how AI systems can suffer from the same biases as human experts, and how that could lead to biased results. Viewers will learn how testers, data scientists, and other stakeholders can develop test cases to recognize biases, both in data and the resulting system, and how to address those biases. About the speaker Gerie Owen is a Lead Quality Engineer at ZS. She is a Certified Scrum Master, Conference Presenter and Author on technology and testing topics. She enjoys analyzing and improving test processes and mentoring new Quality Engineers as well as bringing a cohesive team approach to testing. Gerie is the author of many articles on technology including Agile and DevOps topics. She chooses her presentation topics based on her experiences in technology, what she has learned from them and what she would do to improve them. Gerie can be reached at [email protected]. Her blog, Testing in the Trenches, is https://testinggirl.wordpress.com/ and she is available at www.gerieowen.com and on Twitter and LinkedIn.

Hora

13:00 - 14:00 hs GMT+1

Organizador

Application Development and Management
Compartir
Enviar a un amigo
Mi email *
Email destinatario *
Comentario *
Repite estos números *
Control de seguridad
Enero / 2026 196 webinars
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
Lun 29 de Enero de 2026
Mar 30 de Enero de 2026
Mié 31 de Enero de 2026
Jue 01 de Enero de 2026
Vie 02 de Enero de 2026
Sáb 03 de Enero de 2026
Dom 04 de Enero de 2026
Lun 05 de Enero de 2026
Mar 06 de Enero de 2026
Mié 07 de Enero de 2026
Jue 08 de Enero de 2026
Vie 09 de Enero de 2026
Sáb 10 de Enero de 2026
Dom 11 de Enero de 2026
Lun 12 de Enero de 2026
Mar 13 de Enero de 2026
Mié 14 de Enero de 2026
Jue 15 de Enero de 2026
Vie 16 de Enero de 2026
Sáb 17 de Enero de 2026
Dom 18 de Enero de 2026
Lun 19 de Enero de 2026
Mar 20 de Enero de 2026
Mié 21 de Enero de 2026
Jue 22 de Enero de 2026
Vie 23 de Enero de 2026
Sáb 24 de Enero de 2026
Dom 25 de Enero de 2026
Lun 26 de Enero de 2026
Mar 27 de Enero de 2026
Mié 28 de Enero de 2026
Jue 29 de Enero de 2026
Vie 30 de Enero de 2026
Sáb 31 de Enero de 2026
Dom 01 de Enero de 2026

.

  • Comparativas de Software

    ¿No te salen las cuentas en la nube?

    La nube tiene importantes ventajas: ahorros de costes, facilidad para trabajar en equipos remotos, menor necesidad de administración de la infraestructura, mejoras de seguridad, etc. Sin embargo, al comentar con algunos clientes la posibilidad de migrar las licencias de Atlassian a cloud, me comentaron que habían hecho alguna experiencia de migración y no le salían tan bien las cuentas. Estos comentarios me hicieron reflexionar sobre cuáles podían ser las causas de que no salieran las cuentas y permitirme ofrecer algunas recomendaciones y consejos. ... Leer más

    Publicado el 22-Dic-2021 • 14.40hs

    0 comentarios

  • TODOS Comparativas de Software PDF

    Comparativas de software ERP para todos los sectores

    Publicado el 27-Set-2021 • 12.50hs

  • TODOS Comparativas de Software PDF

    Comparativas de software ERP para Fabricación

    Publicado el 27-Set-2021 • 09.51hs

.

.

.

.

.

Más Secciones »

Hola Invitado