Fraud detection is a classic adversarial analytics challenge: As soon as an automated system successfully learns to stop one scheme, fraudsters move on to attack another way. Each scheme requires looking for different signals (i.e. features) to catch; is relatively rare (one in millions for finance or e-commerce); and may take months to investigate a single case (in healthcare or tax, for example) – making quality training data scarce. This talk will cover a code walk-through, the key lessons learned while building such real-world software systems over the past few years. We'll look for fraud signals in public email datasets, using IPython and popular open-source libraries (scikit-learn, statsmodel, nltk, etc.) for data science and Apache Spark as the compute engine for scalable parallel processing. David will iteratively build a machine-learned hybrid model – combining features from different data sources and algorithmic approaches, to catch diverse aspects of suspect behavior: - Natural language processing: finding keywords in relevant context within unstructured text - Statistical NLP: sentiment analysis via supervised machine learning - Time series analysis: understanding daily/weekly cycles and changes in habitual behavior - Graph analysis: finding actions outside the usual or expected network of people - Heuristic rules: finding suspect actions based on past schemes or external datasets - Topic modeling: highlighting use of keywords outside an expected context - Anomaly detection: Fully unsupervised ranking of unusual behavior Apache Spark is used to run these models at scale – in batch mode for model training and with Spark Streaming for production use. We’ll discuss the data model, computation, and feedback workflows, as well as some tools and libraries built on top of the open-source components to enable faster experimentation, optimization, and productization of the models.

Hora

19:00 - 20:00 hs GMT+1

Organizador

Artificial Intelligence
Compartir
Enviar a un amigo
Mi email *
Email destinatario *
Comentario *
Repite estos números *
Control de seguridad
Mayo / 2025 343 webinars
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
Lun 28 de Mayo de 2025
Mar 29 de Mayo de 2025
Mié 30 de Mayo de 2025
Jue 01 de Mayo de 2025
Vie 02 de Mayo de 2025
Sáb 03 de Mayo de 2025
Dom 04 de Mayo de 2025
Lun 05 de Mayo de 2025
Mar 06 de Mayo de 2025
Mié 07 de Mayo de 2025
Jue 08 de Mayo de 2025
Vie 09 de Mayo de 2025
Sáb 10 de Mayo de 2025
Dom 11 de Mayo de 2025
Lun 12 de Mayo de 2025
Mar 13 de Mayo de 2025
Mié 14 de Mayo de 2025
Jue 15 de Mayo de 2025
Vie 16 de Mayo de 2025
Sáb 17 de Mayo de 2025
Dom 18 de Mayo de 2025
Lun 19 de Mayo de 2025
Mar 20 de Mayo de 2025
Mié 21 de Mayo de 2025
Jue 22 de Mayo de 2025
Vie 23 de Mayo de 2025
Sáb 24 de Mayo de 2025
Dom 25 de Mayo de 2025
Lun 26 de Mayo de 2025
Mar 27 de Mayo de 2025
Mié 28 de Mayo de 2025
Jue 29 de Mayo de 2025
Vie 30 de Mayo de 2025
Sáb 31 de Mayo de 2025
Dom 01 de Mayo de 2025

.

  • Comparativas de Software

    ¿No te salen las cuentas en la nube?

    La nube tiene importantes ventajas: ahorros de costes, facilidad para trabajar en equipos remotos, menor necesidad de administración de la infraestructura, mejoras de seguridad, etc. Sin embargo, al comentar con algunos clientes la posibilidad de migrar las licencias de Atlassian a cloud, me comentaron que habían hecho alguna experiencia de migración y no le salían tan bien las cuentas. Estos comentarios me hicieron reflexionar sobre cuáles podían ser las causas de que no salieran las cuentas y permitirme ofrecer algunas recomendaciones y consejos. ... Leer más

    Publicado el 22-Dic-2021 • 14.40hs

    0 comentarios

  • TODOS Comparativas de Software PDF

    Comparativas de software ERP para todos los sectores

    Publicado el 27-Set-2021 • 12.50hs

  • TODOS Comparativas de Software PDF

    Comparativas de software ERP para Fabricación

    Publicado el 27-Set-2021 • 09.51hs

.

.

.

.

.

Más Secciones »

Hola Invitado